把数据管理起来,形成统一数据资产
其次,将数据可视化
在我们将数据自动化、可视化的呈现出来的过程中,我们能够充分释放数据的信度、效度、准确度方面的价值。这也是为什么越来越多的传统企业在进行数据项目规划时,通常会先做一个叫做”管理驾驶舱”的东西。
其本质就是,通过上层呈现所要保证的一致性和规范性,倒逼下层的数据管理、数据治理,从而逐渐开展数据分析辅助决策、数据驱动业务等。数据可以告诉决策者一些潜在的规律,以数据来证明或判断决策。
帆软基于企业经营构建的数据管理体系
第三个阶段:利用数据优势,通过算法模型挖掘数据背后规律
很多时候,即便数据质量非常完备了,但因为依赖于统计学的数据分析只能对历史的、以往发生过的事情做解释,所以往往总是会慢半拍。而数据挖掘、机器学习,这些近几年才流行起来的技术,可以充分利用海量的数据,通过算法模型去挖掘数据背后的规律,从而辅助我们提前预测或者个性化推荐。
以往我们只会用数据来证明我们历史的决策对错,现在我们用数据来引导我们做出对的决策。基于数据资产催生的人工智能,将数据进行再融合形成新的数据,源源不断给我们提供新的业务视角,让我们不断创新、不停去尝试。
当我们逐渐依赖数据机器人的指令,形成数据服务思维和习惯,让业务与数据形成循环活起来,让它成为业务的一部分,同时让机器智能成为决策环节,运营就可以智能化,即智能化的数字业务系统。